ACADENTIAL


딥러닝 분야에 취업할 수 있도록
좋은 엔지니어, 연구원을 만들어드립니다.


ACADENTIAL은 Academy (학원)과 Potential(잠재력)을 합친 것으로 교육을 통해서 학생들의 잠재력을 최대한 발휘할 수 있도록 도와주는 학원이라는 의미입니다.



딥러닝강의

Deep Learning using PYTORCH

초급자를 위해 준비한 자연어 처리, 딥러닝 강의입니다.

  • 딥러닝이 동작하는 원리
  • 딥러닝의 핵심 개념 (손실함수, 경사하강, 자동미분 등)
  • 파이토치(PyTorch)로 Custom 모델 만들기
  • 딥러닝의 주요 모델(CNN, RNN, Transformer)
  • 컴퓨터비전에 대한 실습
  • 자연어처리에 대한 실습

부트캠프와 전공수업의 아쉬운 점을 보완하고 오로지 실무를 위한 내용만을 담았습니다. 본 강좌에서는 수많은 부트캠프, 강의들이 놓치고 있는 핵심 딥러닝 개념들을 모두 총망라해서 가르쳐드리고자 합니다.

그리고 개념들을 단순 소개하는 것에 그치지 않고 “왜 사용되는지”, “어떤 의미인지”, “어떤 맥락에서 제안되었는지”, “어떤 효과가 있는지” 등등 더 깊이있게 파헤쳐 보고, 여러 실제 Toy Project와 실습을 통해서 이론이 어떻게 코드로 구현되고 접목되는지 이론과 연계해서 배우게 됩니다.

교육내용

ACADENTIAL에서는 소프트웨어 (프론트엔드, 백엔드 등등), 딥러닝과 머신러닝, 데이터 사이언스, 컴퓨터 프로그래밍 (파이썬, 자바, 자바스크립트 등등), 개발자 및 머신러닝 엔지니어 취업과 관련된 강의와 교육 자료들을 제공합니다.

대표소개

ACADENTIAL의 목표는 학생들의 잠재력을 최대한 이끌어주고, 학생들에게 실질적인 도움이 되고 중장기적으로 이로운 교육을 제공하는데 있습니다.
피터선생님

학력

University College London (UCL): MSc in Machine Learning (머신러닝 석사) 
(학점: Distinction, GPA 4.0/4.0)

Imperial College London (ICL): BSc in Theoretical Physics (이론물리학 학사) 
(학점: First Class Honours, GPA 4.0/4.0)


경력

- (현) ML Engineer at MakinaRocks
- (전) ML Engineer at Deargen
- (전) ML Engineer at DeepBio
- (전) Data Science Intern at Streetbees
- (전) Research Student at UCL NLP Group
- (전) Research Student at ICL Photonics Lab


논문

- Lee, Dae, Jeunghyun Byun, and Bonggun Shin. 2023. “Boosting Convolutional Neural Networks’ Protein Binding Site Prediction Capacity Using SE(3)-Invariant Transformers, Transfer Learning And Homology-Based Augmentation.”ArXiv:2303.08818, February. https://arxiv.org/abs/2303.08818

- Byun, Jeunghyun, and Myeonghoon Ryu. 2022. “Selective Kernel Attention Neural Network For Sound Event Detection”

- Oh, Dongpin, Dae Lee, Jeunghyun Byun, and Bonggun Shin. 2022. “Improving Group Robustness under Noisy Labels Using Predictive Uncertainty.”ArXiv:2212.07026 [Cs], December. https://aps.arxiv.org/abs/2212.07026

- Byun, Jeunghyun, and Bonggun Shin. 2022. “GA-MLM Epiformer: Gradient Aligned MLM pre-training BERT for B-cell Epitope Prediction.”

- Byun, Jeunghyun, Pasquale Minervini, Erik Mathiesen, and Ryan Garland. 2020. “ContExt: Neighborhood Context-Aware Knowledge Graph Completion.”


특허

- Jeunghyun Byun, Kangwuk Seo, Daeung Kim, Hojin Lee. 2024. Review of 로봇팔 이상 탐지용 ML 모델의 JOB 기반 CT, application in process.

- Jeunghyun Byun, Kangwuk Seo, Daeung Kim, Hojin Lee. 2024. Review of 쿠버네티스 환경에서 어플리케이션의 실시간 지속 배포를 위한 시스템 및 그 방법, application in process.

- Jeunghyun Byun, Kangwuk Seo, Daeung Kim, Hojin Lee. 2024. Review of Cloud 기반의 Stage 환경에서 자동화된 ML 시스템 및 Sanity 테스트 수행을 포함한 CI Pipeline, application in process.

- Jeunghyun Byun, Kangwuk Seo, Daeung Kim, Hojin Lee. 2024. Review of Job 파일 기반의 Clustering과 Continual Learning을 적용한 Multi-model Hyperparameter Optimization, application in process.

- Lee, Dae, Jeunghyun Byun, and Bonggun Shin. 2022. Review of Boosting Convolutional Neural Networks’ Protein Binding Site Prediction Capacity Using Se(3)-Invariant Transformers, Transfer Learning and Homology-Based Augmentation, application in process.

- Byun, Jeunghyun, and Bonggun Shin. 2022. Review of 사전 학습된 신경망 모델을 조정하는 방법 (Method for Tunning Pre-trained Neural Network Model), issued October 25, 2022.

- Byun, Jeunghyun, Dongpin Oh, and Bonggun Shin. 2022. Review of 배열 정보로부터 예측 결과를 출력하는 방법 (Method For Prediction From Sequential Information), issued August 18, 2022.


프로젝트

- AI in Manufacturing Domain:
    - ML Models For Anomaly Detection in Robots Arms Sensor Data

- AI in Drug Design Domain:
    - Graph Neural Network (GNN) for protein binding atom classification
    - Epitope Prediction.
    - Protein-Protein Interaction
    - Drug Target Interaction

- AI in Diagnosis Domain:
    - Animal Lymph Node Cancer Diagnosis
    - Breast Recurrence Risk Prediction

- AI in Other Domains:
    - Sound Event Detection
    - Optical Characteristics Recognition (OCR)
    - Knowledge Graph Embedding